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Abstract-This paper describes flow during simple shear of non-Newtonian (power-law) viscous materials around a 
rigid cylindrical body, and examines how the magnitude of the stress exponent (n) influences the deflection of 
particle paths as well as dynamic and kinematic quantities. A limited range of values (i-5) of n was used in the 
analysis. The angular velocity of the cylinder is half of the far-field shear strain rate, which is exactly the same as that 
for a Newtonian fluid. Particle paths always exhibit a ‘double-bulge shaped’ separatrix, the size of which slightly 
decreases with increasing n. The maximum values of pressure and differential stress also slightly decrease while that 
of vorticity and kinematic vorticity number increase as n increases, although the maximum change is less than 24% 
from n = I to n = 5. The general pattern of distribution of these dynamic and kinematic quantities around the 
cylinder for different values of n look similar. The non-Newtonian flows are, as a first approximation, similar to the 
Newtonian one. Copyright 0 1996 Elsevier Science Ltd 

INTRODUCTION 

The experimental deformation of rock at high tempera- 
ture and pressure has revealed that the relationship 
between compressional strain rate (9) and differential 
stress (0) during steady-state flow is well represented by 
the power-law equation, & = A 0” exp (- Q/RT), where 
A is the material constant, R is the gas constant, T is the 
absolute temperature, Q is the activation energy for 
creep, and n is the stress exponent (e.g. Nicolas & Poirier 
1976, Poirier 1985). A wide range of values of A , n and Q 
for different rock types or minerals has been proposed. In 
this paper we investigate the stress exponent n. For most 
minerals and rocks, n has a value between 2 and 7 (e.g. 
Carter & Tsenn 1987, Kirby & McCormick 1989). 
Theoretical studies have demonstrated that various 
mechanisms affect the value of n (e.g. Nicolas & Poirier 
1976, Poirier 1985). Recently, Wang et al. (1994) 
demonstrated the importance of Harper-Dorn creep 
(n = 1) in the deep crust and the mantle, and discussed 
how greatly stress estimates are influenced by the 
magnitude of n: the stress estimate differs by several 
orders of magnitude between n = 1 and n = 3. Thus, n is 
one of the most important variables in the quantitative 
evaluation of stress levels in the crust and mantle. 

At present, we have at least three ways of inferring the 
magnitude of n during natural deformation. The first 
involves deformation mechanism analysis, and uses 
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dislocation substructures as keys to bridge experimental 
and theoretical analyses and natural samples. Disloca- 
tion substructures in most mylonites suggest that n is 3 
during mylonitization. This method principally depends 
on extrapolation of the experimental results to natural 
conditions, 

The second method involves fold shape analysis. 
Hudleston & Lan (1994) showed that fold shape is 
highly influenced by n and tried to estimate n of siltstone 
layers by comparing shapes of theoretical and natural 
folds. The third way utilises the shape of mantled 
porphyroclasts in mylonites. Passchier et al. (1993) 
proposed a model in which b-type mantled porphyro- 
clasts without stair-stepping are produced when the 
rheology of the matrix material is Newtonian (n = l), 
whereas those with stair-stepping are produced when the 
rheology is non-Newtonian (n > 1). As both types of 
porphyroclast exist in mylonites, the model actually 
implies that n is not constant but varies from deformation 
to deformation. Passchier (1994) extended the model to 
explain other types (o-, $I- and B-types) of mantled 
porphyroclasts. This model, however, has no basis in 
theory, because no rheological analysis of deformation of 
a non-Newtonian viscous material around a sphere has 
so far been performed, although that for a Newtonian 
viscous material was reported by Einstein (1956), Cox et 

al. (1968), Masuda & Ando (1988), Bjornerud (1989) and 
Gray & Busa (1994). 

This paper analyses the deflection of a non-Newtonian 
simple shear flow around a rigid cylindrical body, 
presenting a theoretical basis for this third method of 
inferring the value of n. It briefly summarizes the general 
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three-dimensional equations for non-Newtonian flow 
and develops the solution of the two-dimensional 
equations using the Finite Element Method (FEM). The 
paper presents results on velocity vectors, particle paths 
and kinematic and dynamic quantities of the flow and 
shows how the magnitude of n influences these. Unfortu- 
nately, however, the results are not consistent with the 
model of Passchier et al. (1993) and Passchier (1994). 

BASIC EQUATIONS 

We consider the velocity of a fluid particle (u, v, w) in 
the Cartesian coordinate system (x, y, z). Since deforma- 
tion within the Earth is very slow, the material is regarded 
as incompressible, and no acceleration and no body 
forces are assumed. 

The equations of motion (e.g. Lamb 1932) are reduced 
to simple form as: 

where u.~.~, ovy, ~zz7 g.rv, cuvx (= ~.A g.vr7 czv t = svz), flzzr 
and cr_ (= a,) are cdmponents of the stress tensor. The 
equation of continuity is 

au+dv+aw=(). 
ax ay az (2) 

The rheological equations for a power-law viscous 
fluid (Tomita 1975) give the relationship between stress 
and strain as 

uyy = -p + 2KOP,, 

a,, = 2KO&, 

where p is the hydrostatic pressure, 
expressed as: 

(3) 

K is a constant. 0 is 

where n is the stress exponent, and ti,, kYTr e,,, g,, iYz 
and t?,,, are components of rate-of-strain tensor defined 
by 

au ex, = - 
ax 

av 

eyy = av 
aw 

eZz = az 
1 av au 

&” = - 
2 G+G ( > 

i,,- = 2 ay az 
1 %v+e 

( > 

By substituting equation (3) into (1) and using 
equation (2), we obtain 

(6) 

Equations (2) and (6) only concern variables u, v, w and 
p for a given n. If n = 1, 0 = 1 in equation (4) and 
equations (6) are equivalent to the Navier-Stokes 
equations for very slow Newtonian viscous flow (e.g. 
Masuda & Ando 1988, equation 1). We wish to obtain 
values of u, v, w and p which satisfy these equations (2) 
and (6) in a restricted area surrounded by a closed 
periphery. Boundary conditions are given as constraints 
on the viscous flow along the periphery, and initial 
conditions are also required. If u, v, w and p are solved 
for stress and strain rate components can be derived from 
equations (3) and (5). However, it is difficult to solve 
equations (2) and (6) when n # 1. 

FINITE ELEMENT METHOD 

The variational principle (e.g. Tomita 1975, Bird et al. 
1987) states that solving these partial differential equa- 
tions (2) and (6) is equivalent to obtaining u, v, and w 
which give a stationary value (minimum in this case) for 
the functional J: 

1 
J=?--_ 

,+I sss cPdxdydz (7) 
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Y ith node are termed (xi, yJ and (ui,vi) (i = l-216), 
respectively. 

(3) In each triangular element, u and v are assumed to 
be expressed as: 

u=a+bx+cy 

v=d+ex+fy (8) 

where a, b, c, d, e and fare unique constants for each 
triangular element. 

(4) Consider a single triangular element whose vertices 
are i,j and kth nodes (Fig. 2a). Since velocity is (ui, vi) at 
(xi, ri), (t+, vi> at (xi, J+) and (Q, vk) at (xk, J+), the 
following equations are derived (e.g. Zienkiewicz 1977): 

XjYk - XkYj XkYi - XiYk XiYj - XjYi 

Yi - Yk Yk - Yi Yi - Yi 

xk- Xj Xi - Xk 3Ci - Xi 

l-2.66 
TjYk - XkYi XkYi - XiYk XiYj - XjYi 

Fig. 1. Finite element grid used in the study, with 288 nodes and 504 
triangular elements. Velocities (u. v) at 36 nodes on the periphery and 36 

Yi - Yk Yk -Yi Yi - Yi 

nodes on the central cylinder are given in accordance with the boundary 
xk- xi xi -xk Xj - Xi 

conditions of the flow. (9) 

where 

1 Xi Yi 

A = 1 Xj yj . 

0 is the dissipation function for the flow (e.g. Tomita I I 1 Xk yk 

1975). We deal with equation (7) using the Finite Element Since I&, I& and e, are directly calculated from 
Method (FEM). equation (8) as 

For simplicity we analyse how the simple shear flow 
deflects around a rigid cylindrical body in two dimen- 
sions (x-y plane). The FEM analysis proceeds with the 
following steps. 

au 
i, = - = b 

ax 

(1) We define the study area (Fig. 1) and its boundary 
av -f (10) 

conditions on the x-y plane. The centre of the rigid eYv = ay - 
cylindrical body is placed at the origin (0,O). The radius 
of the rigid body is 1. No slip is assumed between the rigid 1 av a24 
body and the surrounding non-Newtonian viscous 

P, = - 
( > 

-+- =i(c+e) 
2 ax ay 

material. A time-independent flow is assumed in this 
system. Thus, we need no initial conditions for our 

and &, = d;, = e,, = 0 (because we analyse on the x-y 

analysis. The boundary conditions for u and v along the 
plane), @ in the triangular element is reduced to 

periphery of the area are given as Q = (2b2 + 2f 2 + c2 + 2ce + e2)(A+1)/2. (11) 
u=yandv=O, 

representing a far-field dextral simple shear strain rate (,‘) 
of 1, and those around the rigid cylinder are 

u=y&andv=-x& 

where h is the angular velocity of the rigid cylinder. For 
h, we input 0.3-0.6. Determination of b will be 
performed later. As for n, we input 1,2, 3,4 and 5. 

(4 03 

(2) In the study area, we set 288 nodes (Fig. 1). The area 
was then divided into 504 triangular elements with 3 
nodes as vertices. The velocity (u, v) at 36 nodes on the 
periphery of the area and those at 36 nodes on the 
periphery of the central cylinder are given in accordance 
with the boundary conditions. The velocities at the 
remaining 216 nodes are unknown and to be solved. 

Fig. 2. Schematic diagram of triangular elements for the FEM. (a) Unit 

The known x-y coordinates and the unknown velocity at 
triangular element whose node numbers are i,j and k. (b) Six triangular 

elements around ith node. 
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Then, J for the triangular element can be expressed as 

1 
J=--- 

;+1 ss 
@dxdy 

1 
=w ss 

(2b2 + 2f 2 + c2 + 2ce + e2)(b’)‘2dxdy 

= L.- (2b2 + 2f 2 + c2 + 2ce + e2)(*1)/2 
;+I s/ 

dxdy. 

(12) 

As 

A 
-_= 
2 ss 

dxdy, (13) 

equation (12) eventually is reduced to 

J= ’ A -- (2b2 + 2f 2 + c2 f 2ce + e2)(?-1)/2. 
;+12 (14) 

Thus, Jfor the triangular element is given as a function 
of six unknown variables (u;, Vi, I+, vi, uk and vk). 

(5) In the same way, we expand the integration of J for 
other triangular elements, and consequently cover all the 
study area. Then, J can be expressed as a polynomial 
function of ui and vi (i = 1-216). Since J is required to 
have a stationary value by the variational principle, the 
following 432 equations should be simultaneously satis- 
fied: 

aJ 

au,= 
0 

aJ 
Gj’ 

0. 

(i = 1 to 216) (15) 

All u and v at 216 nodes are unknown variables of a 
system of 432 equations. Our problem, to know how 
simple shear flow deflects around the rigid cylindrical 
body, is consequently replaced by the problem of 
obtaining ui and vi (i = 1 to 216) by solving equation 

(15). 
(6) Practically, we separately formulated aJ/au, = 0 

and aJ/av, = 0 for each i. The ith node is a vertex of six 
triangular elements (Fig. 2b), and ui and vi only appear 
in the integration of J for the six triangular elements. 
Thus, by numbering the triangular elements around ith 
node from 1 to 6 (Fig. 2b), 

where J,,, (WI = l-6) is J for the mth triangular element. 
We concentrate our calculation on one (mth) triangular 
element among the six. From equation (14), 

’ J,,,=---- Am (2bi + 2fi + Ci + 2c,e, + eQ(A+‘)/2 
;+1 2 

(17) 

where A,, b,, fm, c,, e, are values of A, b, f, c and e, 
respectively, calculated from equation (9) for the mth 
triangular element. Thus, 

aJr?l 1 A,;+1 _=--_ 
aui ;+12 2 

x (2bi+2f2+c2 +2c M m e +e2)(t-1)/2 mm m 

afm 
%,,~+4fm~+2c,~+2cm~ 

ac,’ ae 
I I I 

+2emau,+2emG (18) 

(19) 

In this equation, 

afm aem = o 
C&=x ’ 

Yj -Yk abm 
-- 

aui A,,, ’ 

ah xk - xj 
__=- 

aui A,,, ’ 

which leads to 

aJ, 1 
z = ;? (2bk + 2fi + C: + 2c,e, + e~)(~-1)‘2 

I 

[%n& -Yk)+hn(xk -xj)f2e,(xk -xi)] (20) 

where Xj, Xk and yi, yk are the x and y coordinates of the 
other two nodes (j and kth nodes) of the mth triangular 
element, respectively. Similarly, 

aJ, 1 
- = -4 (2bi + 2fi + C: + 2c,e, + ek)(t-‘)‘2 
avi 

[4fm(Xk - Xj> + 2cmbj - yk)+2htij - Yk)] (21) 

was derived. Expanding the similar calculation to the 
other five triangular elements, 

(22) 

are derived as non-linear multiple-variable equations. As 
the six triangular elements around ith node contain the 
other six nodes, u and v at a total of seven nodes are the 
variables of equation (22). Thus, each equation of (22) 
has 14 unknown variables. 

(7) The system of non-linear equations (22) for i = l- 
216, was solved with Newton’s method (e.g. Ortega & 
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Rheinboldt 1970) using a UNIX computer at Shizuoka 
University. 

(8) Since there is no theory giving the angular velocity 
(b) of a rigid cylinder embedded in a simple-shear flow of 
a non-Newtonian viscous matrix (cf. Jeffery 1922), we 
must determine &. Since u and v are dependent on the 
given value of & in the calculation, we introduce a new 
constraint for the determination of b: i.e. total rotational 
moment of the rigid cylinder (A4). From the u and v 
obtained for different ;, we calculate M around the 
cylinder in a polar coordinate system (r, 19) as 

s 

2n 

M= rrr0d6’ (23) 
0 

where 

( 1 a V, V, ave 2 (!-1)‘2 
+ ;=-r+ar >I 

K is the constant in equation (3), V, are velocities parallel 
to the radial and circular axes, respectively, and z,~ is 
tangential stress (e.g. Tomita 1975, Masuda et al. 1995). 
In this case r = 1. If A4 > 0, rotation of the cylinder will 
accelerate; if A4 < 0, decelerate; if A4 = 0, the cylinder 
will rotate at a constant angular velocity. The values of u 
and v for which we are searching should satisfy A4 = 0, 
because the flow is time-independent. We calculated Mat 
different h (& =0.30, 0.40, 0.49, 0.50, 0.51, and 0.60) 
(Fig. 3) and found that the value of h = 0.50 meets the 

M \ 

Fig. 3. Determination of i, by the moment analysis. The moment M 
becomes zero when cj is 0.50 for n = 1-5. The calculation of M was done 
assuming K = 1, which has no influence on the determination of 6~. See 

text for explanation. 

requirement M = 0. This value of ti indicates that the 
relationship between angular velocity (h) and far-field 
simple shear strain rate (9) is expressed by 

& = p/2, (24) 

because we assumed 9 = 1. The relationship is exactly the 
same as that theoretically established by Jeffery (1922) for 
Newtonian viscous materials (n = l), and is consistent 
with Ferguson (1979). 

(9) To evaluate our FEM analysis, we compare the 
velocity vectors and particle paths obtained by the FEM 
for n = 1 (Fig. 4) with those calculated by analytical 
methods (Cox et al. 1968). The results of the two methods 
appear very similar. To quantify the difference, we 
compared the closed particle paths shown in Fig. 4(b). 

(4 
Y 
I _-- - t--- - 

_J_ __- -__ 
- - 

- _- - - - 
-- -- 

- - - 
_ -- -_ - 

- _- _ - - 
x __-..I=_ -.. 

x 

- - 
- - -____-- - - - - -- -_ --- 

- - - - 1 _--- 

t 
- - -- 

. 3 

-- 

(W Y 
I 

Fig. 4. Newtonian flow (n = 1) by FEM. (a) Velocity vector field. Scale 
bar at the right bottom comer. (b) Particle paths. Numbers attached to 
the points show far-field simple shear strain (y) taken for the particle 
initially placed on they axis OJ > 0). The limiting closed and open paths 
are shown, which have Pmin = 1.10, pmax = 2.25 and Pmin = 1.11, pmax 
= co, respectively. (a) and (b) are very similar to figures obtained by 
analytical methods around a sphere (figs. 2 and 4 of Masuda & Ando 

1988). 
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We denote the distance of the farthest and the nearest 
points of the particle path from the centre of the cylinder 

as Pmax and Pmint which lie on the x and y axes, 
respectively. The outer particle path in Fig. 4 has pmax 
= 2.25 and Pmin = 1.11 and the inner one plnax = 1.35 
and p,,,in = 1.06, whereas the theoretical path with pmax 
= 2.25 shows pmin = 1.26 and that with pmax = 1.35 
shows pmin = 1.16. Thus, our Pmin understates the 
theoretical value by 12% and 9%, respectively. These 
values indicates that our FEM analysis gives a good (but 
not excellent) approximation to Newtonian flow, show- 
ing that the 288 nodes in our analysis are satisfactory. 
The number of nodes therefore should be satisfactory for 
n > 1 and the results shown below are presumably 
reliable, as a first approximation, although we cannot 
estimate by how many percent the FEM analysis under- 

values or overvalues quantities for actual non-New- 
tonian flows. 

RESULTS 

The results of our calculation on kinematic and 
dynamic quantities are presented below, focusing on 
how they are influenced by the magnitude of n. In 
general, the results for non-Newtonian viscous flows at 
different n are similar to those for Newtonian flow. 

Velocity vector 

Our FEM analysis at & = 0.5 first gave the velocity 
vector at each node (Fig. 5). The flow is highly deflected 
by the presence of the cylinder. If we do not consider the 
direction of flow, the orientation and magnitude of 
velocity vectors are symmetric with the x and y axes. 
The pattern of the velocity vectors does not essentially 
change with increasing n (compare Fig. 5 with Fig. 4). 

Particle paths 

We apply the particle-path technique that was 
employed by Masuda & Ando (1988). Particle paths for 
n = 3 and 5 are shown in Fig. 6. Both particle paths are 
essentially similar. Each particle has a symmetrical path 
with respect to the x and y axes. Particles close to the 
cylinder exhibit ovoid orbits around the cylinder, 
whereas others have paths running away from the 
cylinder. 

Separatrix 

The separatrix is defined by the boundary surface 
between closed, ovoid paths around the cylinder and 
open paths moving away from the cylinder (Passchier 
et af. 1993, Passchier 1994). The classification of flow 
perturbations around a rigid body in terms of the 
type of separatrix (‘eye shaped’ and ‘bow-tie shaped’) 
was regarded as important by Passchier et al. (1993) 
and Passchier (1994). Consequently, we show in some 
depth how we determined the type and shape of the 

Y 
n=3 _-- + --_ _ 

*( ‘I, 

_ . -\ 
I,, _ 

\’ ‘, - 
. \‘. ‘, . 

_- - -.. 1-t---Y ,‘,- - 
_ 

_ 
- -_-=: :=- - 

- 
- - _ -_ _- _ 

- - - _ 
- 

-_ _-- 

-i 

- _ - -- --- 
- _ -_ __- - 

- -_ -+___ - 
I - 

h 
3 

n=5 
- _---. --_ _ 

_- - - -- 
__- --_ - - 

- - _- - - - - -- -- 

- _ - ‘=I__--- - - - -- -__ __- - _ 
- -- - 

-__ _-- - - 
- - -- -__--- 

- - -- -__ _-- - 
- - -____- - - 

A 3 

Fig. 5. Velocity vector fields for n = 3 and n = 5. Note close similarity 
to each other and also to Fig. 4(a) for n = 1. Scale bar in the right 

bottom corner. 

separatrix for non-Newtonian simple shear flows as 
follows. 

(1) Cox et al. (1968) studied theoretically the shape of 
the separatrix around a cylinder for a Newtonian flow, 
and concluded that the separatrix is ‘double-bulge 
shaped’ (Fig. 7) and that pmax = co and Pmin = 1.30656 
for the separatrix (for prnln and pmax see (9) of the 
previous section). The latter result means that the 
separatrix surface converges on the x axis when x -+ CE. 
These conclusions are helpful when we consider the 
separatrix for non-Newtonian flows. 

(2) We have no stagnation point (see Passchier et al. 
1993, Passchier 1994) on the x axis in the limited analysed 
area. It is difficult to judge the type of separatrix by 
tracing the particle paths in the area shown in Fig. 1. 
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n=3 

-x 

L 

n=5 Y 

I 

-x 

Fig. 6. Particle paths for n = 3 and n = 5. Note similarity to each other 
and also to Fig. 4(b) for n = 1. Numbers attached to the points show 
far-field simple shear strain (y) taken for the particle initially placed on 
they axis b > 0). The limiting closed and open paths are shown, which 
have Pmin = 1.07, prnax = 2.03 and pm,,, = 1.08, prnax = co, respectively, 
for n = 3, and Pmin = 1.05, pmar = 1.77 and pmin = 1.06, prnax = CO, 

respectively, for n = 5. 

(3) In order to know what happens outside the area, we 
derived velocity vectors there as 

U =);y + 0.5)+(x2 + y2)-(2”+‘)‘2 

” = - 0.5~@ + y2)-(2”+‘)/2. (25) 

Fig. 7. The shape of separatrix around a cylinder for Newtonian matrix 
(n = 1) after Cox et al. (1968). The separatrix is double-bulge shaped. 
This figure also shows the separatrix around a sphere, which is similar to 

but smaller than that around a cylinder. 

The way we derived them is explained in the Appendix. 
(4) The velocity vectors (25) show that v < 0 when x > 

0, y > 0. This indicates that no stagnation point exists on 
the x axis for the separatrix, because existence of the 
stagnation point requires v > 0 at x > 0, y > 0 b - 0). It 
indicates pmax = co for the separatrix. Thus, non- 
Newtonian flows have ‘double-bulge shaped’ separatrices 
like those for Newtonian flows (Fig. 7). 

(5) We wish to determine Pmin of the separatrix. From 
equation (25), we cannot obtain analytically the x and y 
coordinates of the separatrix. We judged whether the 
path is open or closed by tracing the particle originating 
at(O,p,i,)uptox = 10:ifz > Oatx = 10,thepathwas 
judged open; if z I 0 at x = 10, the path was considered 
closed. Giving prni,, iteratively, we searched Pmin for the 
separatrix. 

(6) The value of Pmin of the separatrix should be 
between 1.10 and 1.11, 1.07 and 1.08, and 1.05 and 1.06 
for n = 1, 3 and 5, respectively. Pmin of the separatrix 
slightly decreases with increasing n. The limiting paths 
having p,,,in = 1.10 (closed path) and 1.11 (open) for n = 
1, Pmin = 1.07 (closed) and 1.08 (open) for n = 3, and 
Pmin = 1.05 (closed) and 1.06 (open) for n = 5 are shown 
in Fig. 4(b) and 6. 

Distortion of lines and determination of strain ellipses 

Distortion of lines can be depicted by tracing a number 
of points initially arranged in a line using the particle- 
path technique. The patterns of distorted lines for n = l- 
5 are similar. Figure 8 shows the pattern for n = 5. These 
appear similar to those around a sphere for n = 1 (fig. 5 
of Masuda & Ando 1988). 

Similarly strain ellipses can be obtained by tracing 
points initially arranged in a circle (Fig. 9). The 
elongation directions of the strain ellipses are similar for 
n = 3 and 5, wrapping around the cylinder. The patterns 
are also similar to those around a sphere for n = 1 (fig. 6 
of Masuda & Ando 1988). 

Principal stresses 

Components of the stress tensor (gXX. oY,, and ax_“) are 
derived from equation (3) and used to calculate the 
magnitudes of the principal stresses (al and g2) and their 
orientations (Jaeger & Cook 1969). In order to remove 
the influence of a non-Newtonian material constant (K) 
from the magnitude of stress, we show normalised stress 
(stress/K) which is independent of the value of K. Figure 
10 shows the magnitudes and orientations of al/K and 
Q/K for n = 3. They are similar to those for n = l-4. 

Pressure 

Pressure p is calculated as: 

P = ; bx + uyy) = ; K@(&, + ;;,). (26) 

In this calculation the far-field pressure is assumed to 
be zero. Figure 11(a) shows the distribution of p/K 
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I I initial orientation I 

I I I I I I 

Fig. 8. Distortion of lines for n = 5. These patterns are similar to those 
for a Newtonian flow around a rigid sphere shown in Masuda & Ando 
(1988). Patterns for n = 14 (not shown) are similar to those for n = 5. 

:’ = far-field simple shear strain. 

around the cylinder for n = 3 and 5. As 6, and e,,,. are 
constant in each triangular element, p is uniform in the 
element. The distribution has a 2-fold symmetric axis, 
and a 4-fold one if we do not consider the sign of the 
values. Pressure reaches a maximum and a minimum at 
half-way between the x and z axes, and the positions are 
the same for different n. The maximum value of p/K is 
0.41,0.36 and 0.35 for n = 1, 3 and 5, respectively. These 
magnitudes become slightly smaller as H increases (Fig. 
11). 

Differential stress 

Figure 1 l(b) shows the magnitude of normalized 
differential stress (oi - az)/K. Differential stress reaches 
a maximum on the x and y axes around the cylinder, 
whereas its minimum values are half-way between these 
axes. The magnitude of differential stress becomes 
smaller with increasing n in areas close to the cylinder, 
whereas it remains constant for different n in areas far 
from the cylinder. The maximum differential stress is 
2.84,2.46 and 2.34 for n = 1, 3 and 5, respectively. Stress 

Y= 

Y= I 

Fig. 9. Strain ellipses for n = 3 and n = 5 as a function of far-field simple shear strain 11. They are similar at the same ; 
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Fig. 10. Principal orientations of rate-of-strain tensor [s-l] for n = 5. 
Extensional principal strain rates are shown in (a) and compressional 

ones in (b). Those for n = 14 (not shown) are very similar to them. 

intensification due to the existence of a cylinder slightly 
weakens with increasing n. 

Vorticity 

Vorticity (w,) is defined by o, = au/+ - &/ax. This 
definition indicates positive vorticity for dextral shear. 
Figure 12(a) shows the variation in vorticity around the 
cylinder. Vorticity becomes negative in the small area 
close to the cylinder on the x axis where shear sense is 
sinistral. The general pattern of distribution appears 
unchanged with increasing n. The maximum value of w, 
is 2.40,2.84 and 3.14 for n = 1,3 and 5, respectively, and 
dissipates to the far-field value (w, = 1) slightly quicker 
forn = 5thanforn = 1. 

Kinematic vorticity number 

Figure 12(b) shows the kinematic vorticity number, 
W,, defined by Means et al. (1980): 

wk= J& 
(27) 

where sl, s2 and s3 are the principal strain rates. As with 
the vorticity, Wk is positive and negative when shear 
sense is dextral and sinistral, respectively. The far-field 
value is 1. The maximum value of Wk is 1.80, 1.82 and 
1.83 for n = 1,3 and 5, respectively, almost constant with 
increasing n. 

DISCUSSION 

Influence of the magnitude of n 

Stress and strain analyses in two-dimensional annular 
shear zones (Masuda et al. 1995) revealed that differential 
stress and strain rates are highly influenced by the 
magnitude of n, resulting in very different distributions 
of strain ellipses as a function of n in the shear zones. The 
strain localization becomes more prominent with increas- 
ing n. Therefore, in the present analysis we expected a 
similar major influence of n on the velocity vector field, 
with deflection of marker lines and kinematic and 
dynamic quantities. However, as described above, the 
influence of n on these factors is small. This difference 
may be explained by considering the boundary condi- 
tions. In the annular shear zone, the angular velocity of 
the inner boundary is kept constant, whereas differential 
stress in the shear zone decreases with increase in the 
distance from the inner boundary. This decrease in stress 
value (z) reflects the decrease in strain rate (p) with 
distance. Since 9 cc Y’, n has a large influence on p. 

We also considered a straight shear zone without any 
inclusions. If we assume a similar value of strain rate at 
the boundaries of the shear zone as the boundary 
condition of the equations (2) and (6), we can derive the 
same strain rate everywhere irrespective of n. In such a 
case, the shear stress T is expressed as z oc ?‘I”. Thus, t 
should not be drastically influenced by n. The relation- 
ship we obtained between stress and strain rate around a 
cylinder is similar to the latter case. 

CONCLUSIONS 

(1) The Finite Element Method can be successfully 
applied to power-law, simple shear flows with n = l-5 
around a rigid cylinder. 

(2) b = )i/2 for n = l-5. 
(3) Distributions of velocity vectors for n = l-5 are 

similar. 
(4) The separatrices are all ‘double-bulge shaped’. The 

size of the separatrix slightly decreases with increasing n. 
(5) Distribution patterns of kinematic and dynamic 

quantities are similar for n = l-5 as a first approxima- 
tion. 
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